Serveur d'exploration sur la pourriture ligneuse

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Genome Sequencing and Carbohydrate-Active Enzyme (CAZyme) Repertoire of the White Rot Fungus Flammulina elastica.

Identifieur interne : 000424 ( Main/Exploration ); précédent : 000423; suivant : 000425

Genome Sequencing and Carbohydrate-Active Enzyme (CAZyme) Repertoire of the White Rot Fungus Flammulina elastica.

Auteurs : Young-Jin Park [Corée du Sud] ; Yong-Un Jeong [Corée du Sud] ; Won-Sik Kong [Corée du Sud]

Source :

RBID : pubmed:30104475

Descripteurs français

English descriptors

Abstract

Next-generation sequencing (NGS) of the Flammulina elastica (wood-rotting basidiomycete) genome was performed to identify carbohydrate-active enzymes (CAZymes). The resulting assembly (31 kmer) revealed a total length of 35,045,521 bp (49.7% GC content). Using the AUGUSTUS tool, 12,536 total gene structures were predicted by ab initio gene prediction. An analysis of orthologs revealed that 6806 groups contained at least one F. elastica protein. Among the 12,536 predicted genes, F. elastica contained 24 species-specific genes, of which 17 genes were paralogous. CAZymes are divided into five classes: glycoside hydrolases (GHs), carbohydrate esterases (CEs), polysaccharide lyases (PLs), glycosyltransferases (GTs), and auxiliary activities (AA). In the present study, annotation of the predicted amino acid sequences from F. elastica genes using the dbCAN CAZyme database revealed 508 CAZymes, including 82 AAs, 218 GHs, 89 GTs, 18 PLs, 59 CEs, and 42 carbohydrate binding modules in the F. elastica genome. Although the CAZyme repertoire of F. elastica was similar to those of other fungal species, the total number of GTs in F. elastica was larger than those of other basidiomycetes. This genome information elucidates newly identified wood-degrading machinery in F. elastica, offers opportunities to better understand this fungus, and presents possibilities for more detailed studies on lignocellulosic biomass degradation that may lead to future biotechnological and industrial applications.

DOI: 10.3390/ijms19082379
PubMed: 30104475
PubMed Central: PMC6121412


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Genome Sequencing and Carbohydrate-Active Enzyme (CAZyme) Repertoire of the White Rot Fungus
<i>Flammulina elastica</i>
.</title>
<author>
<name sortKey="Park, Young Jin" sort="Park, Young Jin" uniqKey="Park Y" first="Young-Jin" last="Park">Young-Jin Park</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biomedical Chemistry, Research Institute for Biomedical & Health Science, College of Biomedical and Health Science, Konkuk University, 268 Chungwon-daero, Chungju-si 27478, Korea. yjpark@kku.ac.kr.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>Department of Biomedical Chemistry, Research Institute for Biomedical & Health Science, College of Biomedical and Health Science, Konkuk University, 268 Chungwon-daero, Chungju-si 27478</wicri:regionArea>
<wicri:noRegion>Chungju-si 27478</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Jeong, Yong Un" sort="Jeong, Yong Un" uniqKey="Jeong Y" first="Yong-Un" last="Jeong">Yong-Un Jeong</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biomedical Chemistry, Research Institute for Biomedical & Health Science, College of Biomedical and Health Science, Konkuk University, 268 Chungwon-daero, Chungju-si 27478, Korea. s11034@kku.ac.kr.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>Department of Biomedical Chemistry, Research Institute for Biomedical & Health Science, College of Biomedical and Health Science, Konkuk University, 268 Chungwon-daero, Chungju-si 27478</wicri:regionArea>
<wicri:noRegion>Chungju-si 27478</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kong, Won Sik" sort="Kong, Won Sik" uniqKey="Kong W" first="Won-Sik" last="Kong">Won-Sik Kong</name>
<affiliation wicri:level="1">
<nlm:affiliation>Mushroom Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, 92, Bisan-ro, Eumseong-gun 27709, Korea. wskong@korea.kr.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>Mushroom Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, 92, Bisan-ro, Eumseong-gun 27709</wicri:regionArea>
<wicri:noRegion>Eumseong-gun 27709</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:30104475</idno>
<idno type="pmid">30104475</idno>
<idno type="doi">10.3390/ijms19082379</idno>
<idno type="pmc">PMC6121412</idno>
<idno type="wicri:Area/Main/Corpus">000372</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000372</idno>
<idno type="wicri:Area/Main/Curation">000372</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000372</idno>
<idno type="wicri:Area/Main/Exploration">000372</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Genome Sequencing and Carbohydrate-Active Enzyme (CAZyme) Repertoire of the White Rot Fungus
<i>Flammulina elastica</i>
.</title>
<author>
<name sortKey="Park, Young Jin" sort="Park, Young Jin" uniqKey="Park Y" first="Young-Jin" last="Park">Young-Jin Park</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biomedical Chemistry, Research Institute for Biomedical & Health Science, College of Biomedical and Health Science, Konkuk University, 268 Chungwon-daero, Chungju-si 27478, Korea. yjpark@kku.ac.kr.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>Department of Biomedical Chemistry, Research Institute for Biomedical & Health Science, College of Biomedical and Health Science, Konkuk University, 268 Chungwon-daero, Chungju-si 27478</wicri:regionArea>
<wicri:noRegion>Chungju-si 27478</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Jeong, Yong Un" sort="Jeong, Yong Un" uniqKey="Jeong Y" first="Yong-Un" last="Jeong">Yong-Un Jeong</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biomedical Chemistry, Research Institute for Biomedical & Health Science, College of Biomedical and Health Science, Konkuk University, 268 Chungwon-daero, Chungju-si 27478, Korea. s11034@kku.ac.kr.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>Department of Biomedical Chemistry, Research Institute for Biomedical & Health Science, College of Biomedical and Health Science, Konkuk University, 268 Chungwon-daero, Chungju-si 27478</wicri:regionArea>
<wicri:noRegion>Chungju-si 27478</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kong, Won Sik" sort="Kong, Won Sik" uniqKey="Kong W" first="Won-Sik" last="Kong">Won-Sik Kong</name>
<affiliation wicri:level="1">
<nlm:affiliation>Mushroom Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, 92, Bisan-ro, Eumseong-gun 27709, Korea. wskong@korea.kr.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>Mushroom Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, 92, Bisan-ro, Eumseong-gun 27709</wicri:regionArea>
<wicri:noRegion>Eumseong-gun 27709</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">International journal of molecular sciences</title>
<idno type="eISSN">1422-0067</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Databases, Genetic (MeSH)</term>
<term>Flammulina (enzymology)</term>
<term>Flammulina (genetics)</term>
<term>Fungal Proteins (classification)</term>
<term>Fungal Proteins (genetics)</term>
<term>Fungal Proteins (metabolism)</term>
<term>Genome, Fungal (MeSH)</term>
<term>Glycoside Hydrolases (chemistry)</term>
<term>Glycoside Hydrolases (genetics)</term>
<term>Glycoside Hydrolases (metabolism)</term>
<term>Glycosyltransferases (chemistry)</term>
<term>Glycosyltransferases (genetics)</term>
<term>Glycosyltransferases (metabolism)</term>
<term>Phylogeny (MeSH)</term>
<term>Polysaccharide-Lyases (chemistry)</term>
<term>Polysaccharide-Lyases (genetics)</term>
<term>Polysaccharide-Lyases (metabolism)</term>
<term>Sequence Analysis, DNA (MeSH)</term>
<term>Whole Genome Sequencing (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Analyse de séquence d'ADN (MeSH)</term>
<term>Bases de données génétiques (MeSH)</term>
<term>Flammulina (enzymologie)</term>
<term>Flammulina (génétique)</term>
<term>Glycosidases (composition chimique)</term>
<term>Glycosidases (génétique)</term>
<term>Glycosidases (métabolisme)</term>
<term>Glycosyltransferase (composition chimique)</term>
<term>Glycosyltransferase (génétique)</term>
<term>Glycosyltransferase (métabolisme)</term>
<term>Génome fongique (MeSH)</term>
<term>Phylogenèse (MeSH)</term>
<term>Polysaccharide-lyases (composition chimique)</term>
<term>Polysaccharide-lyases (génétique)</term>
<term>Polysaccharide-lyases (métabolisme)</term>
<term>Protéines fongiques (classification)</term>
<term>Protéines fongiques (génétique)</term>
<term>Protéines fongiques (métabolisme)</term>
<term>Séquençage du génome entier (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Glycoside Hydrolases</term>
<term>Glycosyltransferases</term>
<term>Polysaccharide-Lyases</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="classification" xml:lang="en">
<term>Fungal Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="classification" xml:lang="fr">
<term>Protéines fongiques</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Glycosidases</term>
<term>Glycosyltransferase</term>
<term>Polysaccharide-lyases</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Flammulina</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Flammulina</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Flammulina</term>
<term>Fungal Proteins</term>
<term>Glycoside Hydrolases</term>
<term>Glycosyltransferases</term>
<term>Polysaccharide-Lyases</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Flammulina</term>
<term>Glycosidases</term>
<term>Glycosyltransferase</term>
<term>Polysaccharide-lyases</term>
<term>Protéines fongiques</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Fungal Proteins</term>
<term>Glycoside Hydrolases</term>
<term>Glycosyltransferases</term>
<term>Polysaccharide-Lyases</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Glycosidases</term>
<term>Glycosyltransferase</term>
<term>Polysaccharide-lyases</term>
<term>Protéines fongiques</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Databases, Genetic</term>
<term>Genome, Fungal</term>
<term>Phylogeny</term>
<term>Sequence Analysis, DNA</term>
<term>Whole Genome Sequencing</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Analyse de séquence d'ADN</term>
<term>Bases de données génétiques</term>
<term>Génome fongique</term>
<term>Phylogenèse</term>
<term>Séquençage du génome entier</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Next-generation sequencing (NGS) of the
<i>Flammulina elastica</i>
(wood-rotting basidiomycete) genome was performed to identify carbohydrate-active enzymes (CAZymes). The resulting assembly (31 kmer) revealed a total length of 35,045,521 bp (49.7% GC content). Using the AUGUSTUS tool, 12,536 total gene structures were predicted by ab initio gene prediction. An analysis of orthologs revealed that 6806 groups contained at least one
<i>F. elastica</i>
protein. Among the 12,536 predicted genes,
<i>F. elastica</i>
contained 24 species-specific genes, of which 17 genes were paralogous. CAZymes are divided into five classes: glycoside hydrolases (GHs), carbohydrate esterases (CEs), polysaccharide lyases (PLs), glycosyltransferases (GTs), and auxiliary activities (AA). In the present study, annotation of the predicted amino acid sequences from
<i>F. elastica</i>
genes using the dbCAN CAZyme database revealed 508 CAZymes, including 82 AAs, 218 GHs, 89 GTs, 18 PLs, 59 CEs, and 42 carbohydrate binding modules in the
<i>F. elastica</i>
genome. Although the CAZyme repertoire of
<i>F. elastica</i>
was similar to those of other fungal species, the total number of GTs in
<i>F. elastica</i>
was larger than those of other basidiomycetes. This genome information elucidates newly identified wood-degrading machinery in
<i>F. elastica</i>
, offers opportunities to better understand this fungus, and presents possibilities for more detailed studies on lignocellulosic biomass degradation that may lead to future biotechnological and industrial applications.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">30104475</PMID>
<DateCompleted>
<Year>2018</Year>
<Month>09</Month>
<Day>24</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>14</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1422-0067</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>19</Volume>
<Issue>8</Issue>
<PubDate>
<Year>2018</Year>
<Month>Aug</Month>
<Day>13</Day>
</PubDate>
</JournalIssue>
<Title>International journal of molecular sciences</Title>
<ISOAbbreviation>Int J Mol Sci</ISOAbbreviation>
</Journal>
<ArticleTitle>Genome Sequencing and Carbohydrate-Active Enzyme (CAZyme) Repertoire of the White Rot Fungus
<i>Flammulina elastica</i>
.</ArticleTitle>
<ELocationID EIdType="pii" ValidYN="Y">E2379</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.3390/ijms19082379</ELocationID>
<Abstract>
<AbstractText>Next-generation sequencing (NGS) of the
<i>Flammulina elastica</i>
(wood-rotting basidiomycete) genome was performed to identify carbohydrate-active enzymes (CAZymes). The resulting assembly (31 kmer) revealed a total length of 35,045,521 bp (49.7% GC content). Using the AUGUSTUS tool, 12,536 total gene structures were predicted by ab initio gene prediction. An analysis of orthologs revealed that 6806 groups contained at least one
<i>F. elastica</i>
protein. Among the 12,536 predicted genes,
<i>F. elastica</i>
contained 24 species-specific genes, of which 17 genes were paralogous. CAZymes are divided into five classes: glycoside hydrolases (GHs), carbohydrate esterases (CEs), polysaccharide lyases (PLs), glycosyltransferases (GTs), and auxiliary activities (AA). In the present study, annotation of the predicted amino acid sequences from
<i>F. elastica</i>
genes using the dbCAN CAZyme database revealed 508 CAZymes, including 82 AAs, 218 GHs, 89 GTs, 18 PLs, 59 CEs, and 42 carbohydrate binding modules in the
<i>F. elastica</i>
genome. Although the CAZyme repertoire of
<i>F. elastica</i>
was similar to those of other fungal species, the total number of GTs in
<i>F. elastica</i>
was larger than those of other basidiomycetes. This genome information elucidates newly identified wood-degrading machinery in
<i>F. elastica</i>
, offers opportunities to better understand this fungus, and presents possibilities for more detailed studies on lignocellulosic biomass degradation that may lead to future biotechnological and industrial applications.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Park</LastName>
<ForeName>Young-Jin</ForeName>
<Initials>YJ</Initials>
<Identifier Source="ORCID">0000-0002-8392-4772</Identifier>
<AffiliationInfo>
<Affiliation>Department of Biomedical Chemistry, Research Institute for Biomedical & Health Science, College of Biomedical and Health Science, Konkuk University, 268 Chungwon-daero, Chungju-si 27478, Korea. yjpark@kku.ac.kr.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Jeong</LastName>
<ForeName>Yong-Un</ForeName>
<Initials>YU</Initials>
<AffiliationInfo>
<Affiliation>Department of Biomedical Chemistry, Research Institute for Biomedical & Health Science, College of Biomedical and Health Science, Konkuk University, 268 Chungwon-daero, Chungju-si 27478, Korea. s11034@kku.ac.kr.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kong</LastName>
<ForeName>Won-Sik</ForeName>
<Initials>WS</Initials>
<AffiliationInfo>
<Affiliation>Mushroom Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, 92, Bisan-ro, Eumseong-gun 27709, Korea. wskong@korea.kr.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>08</Month>
<Day>13</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Int J Mol Sci</MedlineTA>
<NlmUniqueID>101092791</NlmUniqueID>
<ISSNLinking>1422-0067</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005656">Fungal Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.4.-</RegistryNumber>
<NameOfSubstance UI="D016695">Glycosyltransferases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.2.1.-</RegistryNumber>
<NameOfSubstance UI="D006026">Glycoside Hydrolases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 4.2.2.-</RegistryNumber>
<NameOfSubstance UI="D011133">Polysaccharide-Lyases</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D030541" MajorTopicYN="N">Databases, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055393" MajorTopicYN="N">Flammulina</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005656" MajorTopicYN="N">Fungal Proteins</DescriptorName>
<QualifierName UI="Q000145" MajorTopicYN="N">classification</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016681" MajorTopicYN="Y">Genome, Fungal</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006026" MajorTopicYN="N">Glycoside Hydrolases</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016695" MajorTopicYN="N">Glycosyltransferases</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010802" MajorTopicYN="N">Phylogeny</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011133" MajorTopicYN="N">Polysaccharide-Lyases</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017422" MajorTopicYN="N">Sequence Analysis, DNA</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000073336" MajorTopicYN="N">Whole Genome Sequencing</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Flammulina elastica</Keyword>
<Keyword MajorTopicYN="N">carbohydrate active enzyme</Keyword>
<Keyword MajorTopicYN="N">whole genome sequencing</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>07</Month>
<Day>02</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2018</Year>
<Month>07</Month>
<Day>30</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2018</Year>
<Month>08</Month>
<Day>07</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>8</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>8</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2018</Year>
<Month>9</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">30104475</ArticleId>
<ArticleId IdType="pii">ijms19082379</ArticleId>
<ArticleId IdType="doi">10.3390/ijms19082379</ArticleId>
<ArticleId IdType="pmc">PMC6121412</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 1995 Feb 17;270(7):3081-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7852389</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 1999 Jul-Aug;27(2-3):175-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10441443</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Mol Biol Rev. 2014 Dec;78(4):614-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25428937</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2000 Aug 31;1481(1):202-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10962107</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Biotechnol. 2009 Jun;20(3):348-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19502047</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1983 Jul 5;167(3):725-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6876163</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Biofuels. 2016 Jun 29;9:133</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27366206</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Comput Biol. 2016 Dec 19;12(12):e1005300</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27992426</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2012 Jul;40(Web Server issue):W445-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22645317</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1985 Oct 25;230(4724):400-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4048938</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2004 Jun;22(6):695-700</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15122302</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycology. 2017 Dec 24;9(2):93-105</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30123665</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2011 Aug 5;286(31):27848-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21653698</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2017 Mar 16;7(1):222</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28302998</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biosci Biotechnol Biochem. 2009 Jul;73(7):1671-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19584528</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2008 May;18(5):821-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18349386</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2016 Jan 4;44(D1):D279-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26673716</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biosci Biotechnol Biochem. 2009 Oct;73(10):2240-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19809184</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Glycobiology. 2018 Dec 1;28(1):3-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29040563</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Mol Biol Rev. 2015 Jun;79(2):243-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25971588</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1990 Feb 15;265(5):2873-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2154463</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Biotechnol. 2009 Jun;20(3):364-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19520566</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1997 Mar 1;25(5):955-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9023104</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2014 Aug 1;30(15):2114-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24695404</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Folia Microbiol (Praha). 2004;49(1):46-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15114865</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 2006 Sep;23(12):857-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17001629</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2011 Sep 29;8(10):785-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21959131</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2005 Jul 1;33(Web Server issue):W465-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15980513</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int Microbiol. 2005 Sep;8(3):195-204</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16200498</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2005 Dec 22;438(7071):1105-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16372000</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2014 Apr 08;9(4):e93560</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24714189</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Enzyme Microb Technol. 1993 Jun;15(6):460-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7763680</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 1997 Sep 15;326 ( Pt 3):929-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9334165</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Adv. 2012 Nov-Dec;30(6):1575-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22580218</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Biochem Biotechnol. 1986 Apr;12(2):135-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3521491</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2004 Sep 15;382(Pt 3):769-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15214846</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Glycobiology. 2010 Dec;20(12):1547-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20805221</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Biotechnol. 2005 Oct;16(5):577-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16154338</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2014 Jan;42(Database issue):D490-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24270786</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Soc Trans. 1987 Aug;15(4):618-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3315771</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Rev. 1995 Jul;16(4):323-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7654407</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Struct Biol. 1995 Mar;2(3):218-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7773790</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Chem Biol. 2006 Apr;10(2):147-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16495121</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2016 Aug 08;11(8):e0160336</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27500531</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Extremophiles. 2006 Jun;10(3):251-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16601914</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microb Biotechnol. 2009 Mar;2(2):164-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21261911</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2011 Nov 23;12(11):R116</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22112802</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013 Jun 03;8(6):e65633</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23755261</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycobiology. 2014 Dec;42(4):322-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25606003</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2010 Sep;28(9):957-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20622885</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2009 Nov;65(Pt 11):1196-205</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19923715</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Biofuels. 2013 Mar 21;6(1):41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23514094</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 Jun 29;107(26):11889-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20547848</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2013 Apr 23;14:274</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23617724</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Rev. 2002 Mar;26(1):73-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12007643</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Mol Biol Rev. 2006 Jun;70(2):283-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16760304</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Enzyme Microb Technol. 2016 Nov;93-94:79-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27702488</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 1994 Sep;126(5):1127-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8063852</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Microbiol. 2011 Jun;14(3):259-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21531609</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2014 Apr 17;10(4):e1004261</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24743168</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 1991 Dec 1;280 ( Pt 2):309-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1747104</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Appl Microbiol. 2014;88:103-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24767427</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2009 Jan;37(Database issue):D233-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18838391</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2015 Aug 06;16:157</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26243257</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2013 Mar;79(5):1545-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23263967</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2007 Jul;35(Web Server issue):W585-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17517783</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2015 Jan;12(1):59-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25402007</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biochem. 2008;77:521-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18518825</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2008 Mar 6;452(7183):88-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18322534</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Microbiol Biotechnol. 2011 Sep;91(6):1477-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21785931</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Biochem Eng Biotechnol. 2007;108:205-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17846725</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2015 Feb;81(4):1513-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25527556</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Biotechnol. 2002 Aug;13(4):390-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12323363</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2003 Apr 25;328(2):307-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12691742</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2003 Apr 24;422(6934):859-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12712197</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2012 Oct 23;109(43):17501-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23045686</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2012 Nov;11(11):1413-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23104368</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Biofuels. 2017 Jul 3;10:170</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28690679</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Mol Biol Rev. 2002 Sep;66(3):506-77, table of contents</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12209002</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biotechnol. 2001 Jul 26;89(1):11-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11472796</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2012 Apr 3;109(14):5458-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22434909</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2006 Nov 2;444(7115):97-101</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17080091</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Glycobiology. 2006 Feb;16(2):29R-37R</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16037492</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Corée du Sud</li>
</country>
</list>
<tree>
<country name="Corée du Sud">
<noRegion>
<name sortKey="Park, Young Jin" sort="Park, Young Jin" uniqKey="Park Y" first="Young-Jin" last="Park">Young-Jin Park</name>
</noRegion>
<name sortKey="Jeong, Yong Un" sort="Jeong, Yong Un" uniqKey="Jeong Y" first="Yong-Un" last="Jeong">Yong-Un Jeong</name>
<name sortKey="Kong, Won Sik" sort="Kong, Won Sik" uniqKey="Kong W" first="Won-Sik" last="Kong">Won-Sik Kong</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/WhiteRotV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000424 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000424 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    WhiteRotV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:30104475
   |texte=   Genome Sequencing and Carbohydrate-Active Enzyme (CAZyme) Repertoire of the White Rot Fungus Flammulina elastica.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:30104475" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a WhiteRotV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Tue Nov 17 14:47:15 2020. Site generation: Tue Nov 17 14:50:18 2020